Beiträge

Umlaufzeit und Mindestumlaufzeit

Wie viele Züge werden für einen Linienbetrieb benötigt? Welche Wendezeiten nimmt man dafür an? Gibt es Minimalwerte, die nicht unterschritten werden dürfen? Wie bemisst man die technischen Prozesse einer Wende? Wie setzt sich die Umlaufzeit zusammen? Wo und in welchem Ausmaß sind die Pufferzeiten einzuplanen? Welche Rolle spielen die Zuglaufzeiten bei der Mindestumlaufzeit? Inwiefern gibt es Zusammenhänge zwischen dem ausgewählten Takt und den Pufferzeiten? Alle Antworten dazu liefert unser Umlaufzeitrechner:

Zu den Eingabewerten unseres Umlaufzeitrechners zählen einerseits die Zuglaufzeiten von und nach den beiden Endstationen, aber auch verschiedene Auswahlfelder zum Verkehrssystem, zu den Wendeschemata an den Endstationen, und nicht zuletzt die Zuglänge. Aus all diesen Daten geht dann die Mindestumlaufzeit als Ergebniswert hervor. Für alle Eingabedaten gibt es entsprechende sinnvolle Annahmen, die ebenso transparent für den Nutzer sind.

In einer weiteren Komponente des Rechners lassen sich dann durch die Auswahl einer bestimmten Taktung der Linie eine bevorzugte Umlaufzeit errechnen. Weitere Ergebnisprodukte sind die Anzahl der Züge im Linienbetrieb als auch ein Gesamtwendezeitpuffer, der indirekt eine Aussagekraft über die Verspätungsanfälligkeit der Linie gibt. Alle Berechnungsschritte sind im Unterkapitel Formeln nachvollziehbar dargestellt.

Bremsweg und Bremszeit

Wie lang ist der Bremsweg eines Zuges? Wie lange dauert überdies der Bremsvorgang? Ist der Bremsweg unabhängig davon, ob ein Zug von 250 km/h auf 200 km/h bremst oder ob er nur von 50 km/h bis zum Stillstand? Welchen Einfluss haben die Bremsstellungen und die Bremsarten, die für jeden Zug angegeben sind? Warum ist gegebenenfalls die Zuglänge relevant für die Bremszeit und für den Bremsweg? Und welchen Verzögerungswert nimmt man im Falle eines ausgewählten Fahrzeuges an? Alle Antworten dazu liefert unserer Verzögerungsrechner:

Zu den Eingabewerten des Verzögerungsrechners zählen neben der mittleren Bremsverzögerung des Zuges auch die Ziel- und Startgeschwindigkeit, die Bremsstellung des Zuges und gegebenenfalls die grobe Zuglängenkategorie. In dem hier nun veröffentlichten Verzögerungsrechner handelt es sich um zwei Zielwerte, nämlich um die resultierende Bremsweglänge und um die resultierende Bremszeit. Mit der Auswahlliste sind mehr als 99% aller Bremsvorgänge der realen Bahnwelt abgedeckt. Jeder Algorithmus wie auch dieser hier ist jedoch nur eine Idealisierung der realen Welt, deswegen gibt es entsprechende niedergeschriebene Annahmen.

Der Verzögerungsrechner ist übrigens in zwei verschiedenen Varianten ausgeführt. Einmal in der Form der Betriebsbremsverzögerung, dessen Ergebniswerte vor allem für fahrplantechnische Konstruktionen herangezogen werden. Die andere Form ist die Zwangs- und Notbremsverzögerung. Sie wird meistens für Regelwerte von Schutzstrecken, Durchrutschwege, Infrastrukturdimensionierungen oder für zugsicherungstechnische Aspekte herangezogen.

In Arbeit: Bahnhofsbereich und freie Strecke

Die Bahninfrastruktur wird zum besseren Verständnis in „Bahnhofsbereich“ und in „freie Strecke“ eingeteilt. Auf den jeweiligen Bereichen gelten entsprechende spezielle Regeln. Neben dieser Grobordnung gibt es für alle Bahnanlagen eine weitere Unterteilungsebene, nämlich die Betriebsstellenarten. Ein Haltepunkt ist beispielsweise eine Betriebsstelle, an welcher Fahrgäste ein und aussteigen dürfen. Diese Aufteilung in Betriebsstellenarten trägt die Ordnung, Abgrenzung und klare Verantwortlichkeiten in den täglichen Ablauf des Betriebes. Es gibt Betriebsstellen innerhalb eines Bahnhofbereiches, und es gibt Betriebsstellen bezogen auf die freie Strecke.

Leider ist aus historischen Gründen bei vielen Bahnhöfen nicht jeder Gleismeter einer Betriebsstelle oder einem Streckenbereich unterscheidungsfrei und vollständig zuzuordnen. In unserem hier angedachten Themenkapitel „Betriebsstellen“ wird aber davon ausgegangen, allein schon wegen des besseren Verständnisses. Dieses Kapitel ist logischerweise das zentrale Einführungskapitel der Kategorie Infrastruktur, weil von diesem weitere tiefergehende Erklärungen dann aufbauen.

Trassierung von Gleisen

Das Verlegen von Gleisen unterliegt einigen Regeln. Sie legen bei der planungstechnischen Trassierung bereits den Grundstein für einen hohen Fahrkomfort und schließlich auch für geringen Verschleiß an Fahrzeug und Infrastruktur. Wenn möglich ist das Gleis Gerade zu planen, denn dies bringt generell Vorteile mit sich. Um die Infrastrukturtrasse aber auch an bestehendes Landschaftsrelief anpassen zu können, sind die wohlabgestimmten Radien mit ihren Übergangsbögen und ggf. Überhöhungen die Instrumente der Trassierungsplaner.

Was die Vertikale Dimension betrifft, so behilft man sich der Neigungen und Steigungen und den dazugehörigen Neigungswechseln. In diesem Kapitel behandeln wir darüber hinaus die Spurweite, das Lichtraumprofil und die Geometrie von Weichen.

In Arbeit: Trassierungsparameter

Aktuell behandeln wir das bauingenieurtechnische Thema „Trassierungsparameter von Schienenwegen„. Wir ordnen es der Kategorie Infrastruktur zu. In der Entwurfsplanung und in weiteren Planungsschritten konkretisieren Planungsingenieure den zentimetergenauen Verlauf von Gleisen und Schienen. Dabei verwenden die Planer ein eigens bahntechnisches Koordinatensystem, das aus der axialen, einer lateralen und einer vertikalen Dimension besteht.

In jeder Dimension bestimmen dabei Regel- und Grenzwerte den Trassierungsverlauf, damit eine Zugfahrt in ihrer Fahrdynamik fließend ohne Unstetigkeiten und ohne Ruck stattfinden kann. Jeder einzeln gewählte Trassierungsparameter ist dabei ein Kompromiss aus den Zielkriterien Instandhaltungsaufwand und Entwurfsgeschwindigkeit bzw. Entwurfslänge. Die wichtigsten Parameter sind die Werte für Radien, Übergangsbögen, Weichen, Steigungen und Neigungen.

Methoden der Abfertigung

Zugbegleiter, Stationswarte oder Triebfahrzeugführer fertigen Züge im Personenverkehr nach dem Fahrgastwechsel ab. Mit dem Begriff Abfertigung ist gemeint, dass damit das Personal die Züge für die Abfahrt vorbereitet. Dazu gehören die Beendigungen des Fahrgastwechsels, das sichere Türschließen, die Türverriegelung und einige Kommunikationssignale zur Abfahrt.

Prozesstechnisch lässt sich der Abfertigungsvorgang noch weiter unterteilen. Wichtige Schritte sind der Aufruf zur Abfertigungsbereitschaft und die Übermittlung der Abfahrtbereitschaft. In dieser prozesstechnischen Zusammenfassung behandeln wir die fahrzeugtechnischen Methoden. Das sind das Zentrale Schließen, die Rücknahme der Türfreigabe und die Abfertigung mit mehreren Personalen. Dabei gehen wir auf die Grundzüge dieser Prozesse ein, ein detailgetreue Abbildung aller Abfertigungsvorgänge dieser Welt ist aus Umfangsgründen nicht möglich.

Hauptsignal und Vorsignal

Das Hauptsignal und sein dazugehöriges Vorsignal prägen das Bild der Eisenbahn. Doch mit beiden ist es zukünftig nicht gut bestellt, immer mehr Fahrerstandssignale ersetzen ortsfeste Signale. Sie machen generell das streckenseitige Signalsystem obsolet. Trotzdem ist das Verständnis über das herkömmliche Signalsystem auch für die Zukunft relevant. Hauptsignale geben die Zustandsinformationen des dahinter liegenden Blocks wieder. Mit anderen Worten, sie sagen darüber aus, ob der dazugehörige Block belegt ist, reserviert ist, oder ob er sich im Grundzustand sich befindet.

Vorsignale sind eine zusätzliche Unterstützung bei mittleren bis hohen Geschwindigkeiten sowie bei Sichteinschränkungen. Sie ermöglichen ein rechtzeitige Zustandsinformation des Blockes, indem sie den gleichen Inhalt wiedergeben, den das Hauptsignal anzeigt.

In Arbeit: Hauptsignal und Vorsignal

In Arbeit befindet sich das Einführungskapitel der Fachkategorie „Fahrtbegriffe„, nämlich das Thema Haupt- und Vorsignal. Man kann heute zum Thema Bahnsignale im Internet viel Fachliches finden. In unserer Videoserie geht es hierbei weniger um Signalvorschriften einzelner Verkehrsunternehmen. Es geht vielmehr um die grundsätzlichen Funktionen von Haupt- und Vorsignalen, sowie deren Standorte und die planungstechnischen Grundsätze. Da unsere Videoserie den Anspruch hat, die technischen Abläufe hinter den Kulissen aller Verkehrsunternehmen zu beschreiben, gehen wir ausschließlich auf das gemeinsame Prinzip aller Signalsysteme ein.

Hauptsignale bilden den Zustand des nachfolgenden Streckenblockes ab. Ist eine Zugfahrt durch eine eingestellte Fahrstraße erlaubt, zeigt das Signal „freie Fahrt“. Ist noch keine Fahrstraße für den Betrachtungszug eingestellt, oder ist der nachfolgende Abschnitt belegt, zeigt das Signalbild Halt. Die Rolle von einem Vorsignal ist dabei die Abbildung des Signalbildes des dazugehörigen Hauptsignals und ist, wenn man so will, der „verlängerte Arm“ des Hauptsignals.

Systemeigenschaften im Schienenverkehr

Im Schienenverkehr gibt es grundlegende Eigenschaften, die sich von anderen Verkehrsträgern erheblich unterscheiden. Bahnsysteme sind Massenverkehrsmittel, die effizient ist. Sie sind indessen auch Systeme die aufwendig sind, und nur interdisziplinär erklärbar sind. Viele Eigenschaften führen zu einem besonderen Merkmal, dem Fahrplan, den es beispielsweise im Individualverkehr nicht gibt. Hier gehen wir der Frage nach, warum beispielsweise Züge nicht spontan und flexibel auf einer Bahninfrastruktur ohne Fahrplan fahren, wie es im Straßenverkehr der Fall ist.

Doch interessant bei dieser Betrachtung ist, dass alle Systemeigenschaften auf drei grundlegende Eigenheiten zurückzuführen sind. Das ist zum einen die Spurführung. Zum anderen die geringe Haftreibung. Und zum dritten die Verantwortlichkeit in der Verkehrsdurchführung. Gäbe es nur eines der drei Eigenheiten nicht, sähe der Schienenverkehr ganz anders aus, als er sich die letzten Jahrhunderte entwickelt hat. In dieser Videoserie behandeln wir alles rund um das Thema Bahn. Willkommen auf der Videoserie Bahntechnik und Bahnbetrieb. Schaut sie euch an!

In Arbeit: Systemeigenschaften des Schienenverkehrs

Eines der nächsten Videoinhalte sind die Systemeigenschaften des Schienenverkehrs. Mit diesem Kapitel möchten wir das System Bahn von einer anderen Perspektive aus beschreiben. Wir wollen dabei Vergleiche zu anderen Verkehrsträgern wie dem Flugzeug oder dem motorisierten Individualverkehr ziehen. Dadurch lassen sich die systematischen Eigenheiten der Bahn besser einordnen, abgrenzen oder verstehen. Die Inhalte sind naheliegend und verblüffend zugleich. Sie decken auf, dass sehr banale Sachen wie die simple Spurführung einen Fahrplan mit komplexen Strukturen notwendig macht. Das hier erarbeitete Kapitel ist somit das Vorkapitel zum ersten technischen Kapitel „Fahren im Raumabstand“ und allen anderen nachfolgenden Technikthemen.

Systemeigenschaften

Die Systemeigenschaften der Bahnen werden meist als selbstverständlich angesehen. Aber bei genauer Betrachtung sind sie durch eine Verkettung verschiedener anderer Eigenschaften erstaunlich gut begründet.