Die Hauptkategorie „Global“ ermöglicht eine Erweiterung des Interessentenkreises aus dem nicht deutschsprachigen Raum. Dabei bieten wir Englisch Übersetzungen oder andere Sprachübersetzungen an. Mit dieser Kategorie erhalten sie schließlich einen inhaltlichen und verständlichen Zugang zu den technischen Beschreibungen. Diese findet man in den Beschreibungen und in den Untertiteln der Videos.

End-of-train detectors

End-of-train detectors belong to necessary basic technology of train protection. This installation recognizes the beginning and the end of trains crossing. Therefore, this is a system of point by point detection of trains. On the one hand these detectors enable that several trains can run safely on the same track. Furthermore, these detectors fulfil other important functions which we will explain in this chapter as well.

End-of-train detectors are the limit of a track section. If a train passes this detector by its head, then the following track section becomes “occupied”. When the following track section is likewise the beginning of the next block, then the signal gets the signal aspect “halt”. If the end of train finally passes the detector, then the last track section gets the status “not assigned”.   

Flank protection switch

Flank protection is one of the most important safety conditions which is realized by train routes controlled by signal boxes. As the name implies, a flank protection switch avoid collisions of trains to each other from the side. This dismissive position of the switch is normally for safe routes. For all neighbouring switches the dismissive position is a basic requirement of a route.

But not always this requirement can be implemented in logical route requirement. There are some exceptions. If there are two routes for example. When both of them need the dismissive but different position of the same flank protection switch. If switches can´t ensure flank protection, then the function has to ensured by a signal or a trackside derailer. Both the rule and the exception are explained in this clip.

Main signal and presignal

The main signal and the appropriate presignal characterize the setting of railway. But both of them do not have good prospects, because more and more cab signals substitute the trackside signals, so that these get obsolete. Nevertheless, the appreciation for the alternative signal system for railway is relevant for future. Main signals reveal state of the following block.

In other words, they predicate if the referred block is occupied, reserved or in its basic state. The presignal is an additional support in case of middle and high trackside velocities or in case of restricted of view distance. They enable a timely information about the state of the referred block by reproducing the same content as the main signal.

Intermittent automatic train control

The “intermittent automatic train running control” is the default automatic train control in rail traffic.  This saves us from collisions even when the engineer disregards a halt signal. It’s initiated by on board brake supervision. This, also referred as braking graphs, ensures that the traveling velocity is always less than the allowed velocity.

In this chapter you will learn all about the most important coherences. In the case of the widespread construction type „PZB 90“, a train passes a trackside radio beacon. If this radio beacon is activated, the train-born supervision for deceleration is enabled. This means the engineer must maintain a traveling velocity below the allowed supervised velocity. If this is not the case, the onboard computer starts a forced brake procedure. The radio beacon is only active, when the following track part is not assigned.